OECD Üyesi Ülkelerde Cepten Yapılan Sağlık Harcamalarını Etkileyen Faktörler

Author :  

Year-Number: 2019-17
Language : null
Konu :
Number of pages: 509-516
Mendeley EndNote Alıntı Yap

Abstract

Bu araştırmanın amacı; OECD (Organisation for Economic Co-operation and Development) ülkelerinde toplam sağlık harcamaları içerisinde cepten yapılan sağlık harcamalarının düzeyini etkileyen faktörleri karar ağacı yöntemini kullanarak belirlemek ve ülkeleri bu değişkenlere göre sınıflandırmaktır. OECD’ye üye olan 36 ülkenin 2015 yılına ait verileri araştırmanın evrenini oluşturmaktadır. Araştırmada bağımlı değişken olarak ülkelerin toplam sağlık harcamaları içerisindeki cepten sağlık harcamalarının oranı ve bağımsız değişken olarak ise kişi başı gayrisafi yurtiçi hâsıla, sağlık sigortası kapsamında olan nüfus oranı, kırsal bölgede yaşayan nüfus oranı, 0-14 yaş ve 65 yaş ve üzeri nüfus oranı, en az üniversite mezunu olan nüfus oranı, kalp hastalıkları, kanser, diyabet ya da solunum hastalıklarından kaynaklı ölüm oranı, sağlık statüsünü kötü olarak algılayan nüfus oranı, yurtiçi kamu harcamaları içerisindeki sağlık harcaması oranı ve işgücü sayısı kullanılmıştır. Karar ağacı modeli CART algoritması kullanılarak Orange veri madenciliği programı aracılığıyla kurulmuştur. Yapılan analizler sonucunda; cepten sağlık harcamalarını etkileyen en önemli faktörün, kamu harcamaları içerisindeki sağlık harcamalarının oranı olduğu ve diğer faktörlerin ise kırsal bölgede yaşayan nüfus oranı, 65 yaş ve üzeri nüfus oranı, en az üniversite mezunu olan nüfus oranı ve işgücü sayısı olduğu bulunmuş ve kurulan karar ağacı modeline göre ülkelerin 9 sınıfta toplandığı görülmüştür. Araştırmadan elde edilen sonuçların, sağlık politikacıları ve planlayıcılarına sağlık harcamalarının düzeyinin belirlenmesine ilişkin alınacak kararlarda önemli kanıta dayalı bilgiler sağlayacağı düşünülmektedir.

Keywords

Abstract

The aim of this research is to determine the factors affecting the level of out-of-pocket health expenditures as a proportion of total health expenditure in OECD countries by using decision tree method and to classify countries according to these variables. The research population comprised the 2015 data of 36 OECD member countries. In the research, the proportion of out-of-pocket health expenditures in total health expenditures of the countries as a dependent variable and the per capita gross domestic product, the ratio of the population covered by the health insurance, the ratio of the population living in the rural area, the ratio of the population of 0-14 years and 65 years of age, the proportion of the population with at least bachelor degree, the mortality rate due to cardiovascular disease, cancer, diabetes or respiratory diseases, the ratio of the population that perceives the health status as bad, domestic government health expenditure as a proportion of the total expenditure and the number of labor force as independent variables are used. The decision tree model was built using the Orange data mining program using the CART algorithm. As a result of the analyzes, it was found that the most important factor affecting the out-of-pocket health expenditures was the domestic government health expenditure as a proportion of the total expenditure and the other factors were the ratio of the population living in the rural areas, the ratio of the population 65 years and older, the proportion of the population with at least bachelor degree and the number of labor force. According to the model, it was found that the countries gathered in 9 classes. It is thought that the results obtained from the research will provide health policy makers and planners with important evidence-based information in the decisions to be taken regarding the determination of the level of health expenditures.

Keywords


  • Alemayehu, B., & Warner, K. E. (2004). The lifetime distribution of health care costs. Health services

  • Alemayehu, B., & Warner, K. E. (2004). The lifetime distribution of health care costs. Health services research, 39(3), 627-642.

  • Amaya-Lara, J. L. (2016). Catastrophic expenditure due to out-of-pocket health payments and its determinants in Colombian households. International journal for equity in health, 15(1), 182.

  • Baicker, K., & Goldman, D. (2011). Patient cost-sharing and healthcare spending growth. Journal of Economic Perspectives, 25(2), 47-68.

  • Bodenheimer, T. (2005). High and rising health care costs. Part 1: seeking an explanation. Annals of internal medicine, 142(10), 847-854.

  • Caley, M., & Sidhu, K. (2010). Estimating the future healthcare costs of an aging population in theUK: expansion of morbidity and the need for preventative care. Journal of Public Health, 33(1), 117- 122.

  • Ensor, T., & Witter, S. (2001). Health economics in low income countries: adapting to the reality of the unofficial economy. Health Policy, 57(1), 1-13.

  • Hajizadeh, M., & Nghiem, H. S. (2011). Out-of-pocket expenditures for hospital care in Iran: who isat risk of incurring catastrophic payments?. International journal of health care finance and economics, 11(4), 267-285.

  • John, E. U., & Stanley, I. (2014). User-Fees in Health Services: Assessing how it Impacts on Access,Utilization and Quality of Care in a Tertiary Health Facility in Delta State, Nigeria. American Journal of Public Health Research, 2(4), 119-24.

  • Kumara, A. S., & Samaratunge, R. (2016). Patterns and determinants of out-of-pocket health careexpenditure in Sri Lanka: evidence from household surveys. Health policy and planning, 31(8), 970- 983.

  • Leive, A., & Xu, K. (2008). Coping with out-of-pocket health payments: empirical evidence from 15 African countries. Bulletin of the World Health Organization, 86, 849-856C.

  • Lu, C., Chin, B., Li, G., & Murray, C. J. (2009). Limitations of methods for measuring out-of-pocketand catastrophic private health expenditures. World Health Organization. Bulletin of the World Health Organization, 87(3), 238-244.

  • Malik, A. M., & Syed, S. I. A. (2012). Socio-economic determinants of household out-of-pocket payments on healthcare in Pakistan. International journal for equity in health, 11(1), 51.

  • Özgen, H., Tatar, M.(2008). Sağlık hizmetleri finansmanında informal ödemeler. Hacettepe Sağlık İdaresi Dergisi, (11)1: 103-132.

  • Paez, K. A., Zhao, L., & Hwang, W. (2009). Rising out-of-pocket spending for chronic conditions: a ten-year trend. Health affairs, 28(1), 15-25.

  • Plümper, T., & Neumayer, E. (2013). Health spending, out-of-pocket contributions, and mortality rates. Public Administration, 91(2), 403-418.

  • Rubin, R. M., & Koelln, K. (1993). Out-of-pocket health expenditure differentials between elderly and non-elderly households. The Gerontologist, 33(5), 595-602.

  • Singh, A. (2003). Building on the user-fee experience: the African case. World Health Organization, Geneva.

  • Somkotra, T., & Lagrada, L. P. (2009). Which households are at risk of catastrophic health spending: experience in Thailand after universal coverage. Health affairs, 28(3), w467-w478.

  • Van Damme, W., Leemput, L. V., Por, I., Hardeman, W., & Meessen, B. (2004). Out‐of‐pocket healthexpenditure and debt in poor households: evidence from Cambodia. Tropical Medicine & International Health, 9(2), 273-280.

  • Xu, K., Evans, D., Carrin, G., & Aguilar-Rivera, A. M. (2005). Designing health financing systems to reduce catastrophic health expenditure. World Health Organization, Geneva.

  • Xu, K., Evans, D. B., Kadama, P., Nabyonga, J., Ogwal, P. O., Nabukhonzo, P., & Aguilar, A. M.(2006). Understanding the impact of eliminating user fees: utilization and catastrophic health expenditures in Uganda. Social science & medicine, 62(4), 866-876.

  • You, X., & Kobayashi, Y. (2011). Determinants of out-of-pocket health expenditure in China. Applied health economics and health policy, 9(1), 39-49.

  • Yurdadoğ, V. (2007). Türkiye’de sağlık harcamalarının finansmanı ve analizi. Çukurova Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 16(1), 591-610.

                                                                                                                                                                                                        
  • Article Statistics