

International

SMART Journal
International SOCIAL MENTALITY AND RESEARCHER THINKERS Journal

e-ISSN: 2630-631X

 RESEARCH ARTICLE
MATHEMATİCS AND SCİENCE EDUCATİON

©Copyright 2021 by Social Mentality And Researcher Thinkers Journal

INTRODUCTION

In this article, we consider an undirected graph G (V, E), where V denotes the set of vertices and E denotes the

set of edges connecting pairs of vertices. A path in this graph is defined as a sequence of vertices connected by

edges, with the constraint that no vertex appears more than once in the sequence. Thus, a path is a traversal

from one vertex to another, where the uniqueness of each vertex along the route is preserved. A cycle is a

particular type of path in which a traversal starts from one vertex, passes through the other vertices, and

eventually returns to the same starting vertex. This form of traversal forms a closed loop, called a cycle. A

cycle graph is a graph that has one or more such cycles and characterized by a structure in which the cycle

includes all vertices in the graph and provides a complete and closed connection between the vertices.

Graph representations in computer science use two primary data structures: the adjacency list and the

adjacency matrix. An adjacency list is a space-saving data structure consisting of an array of linked lists. Each

1 Assoc. Prof. Dr., International University of Sarajevo, Faculty of Engineering and Natural Sciences, Department of Mechanical

Engineering, Sarajevo, Bosnia and Herzegovina.
2 Prof. Dr., International University of Sarajevo, Faculty of Education, Computer Education and Instructional Technology Department,

Sarajevo, Bosnia and Herzegovina.
3 Prof. Dr., Balıkesir University, Necatibey Educational Faculty, Mathematics and Science Education Department, Balıkesir, Türkiye.

The Role of Planar Graphs in Encryption and Decryption in Secure

Communications: An Example

Güvenli İletişimde Planar Grafların Şifreleme ve Çözmedeki Rolü: Bir Örnek

ABSTRACT

This paper presents an innovative algorithm for encryption and decryption in Python, using the

properties of planar graphs to ensure secure data transmission. The proposed symmetric

encryption method uses the concepts of cycle graphs, planar graphs, and minimal spanning trees

to generate a complex ciphertext using a shared key. This approach improves the security and

efficiency of the encryption process. By employing these graph-based structures, the algorithm

generates intricate patterns that enhance the security of the encrypted data, making it resistant to

unauthorized decryption. The use of cycle graphs contributes to creating complex, non-

repetitive patterns, while planar graphs help in efficiently organizing data within a secure

structure. The minimal spanning tree concept plays a critical role in improving the

computational efficiency of the encryption and decryption operations. This novel approach not

only strengthens security but also offers a more efficient alternative to traditional encryption

techniques. The use of planar graphs is integral in organizing and structuring the encryption

process, while minimal spanning trees improve computational efficiency for both encryption

and decryption operations. This approach not only offers an important level of security but also

introduces an efficient and scalable method for secure data encryption and decryption in

Python).

Keywords: Encryption-Decryption, Planar Graph, Cycle Graph.

ÖZET

Bu makale, güvenli veri iletimi sağlamak için düzlemsel grafların özelliklerini kullanan

yenilikçi bir şifreleme ve şifre çözme algoritması sunmaktadır. Önerilen simetrik şifreleme

yöntemi, döngüsel graflar, düzlemsel graflar ve minimal spinning ağaç kavramlarını kullanarak

paylaşılan bir anahtar ile karmaşık bir şifreli metin oluşturur. Bu yaklaşım, şifreleme sürecinin

güvenliğini ve verimliliğini artırır. Bu graf tabanlı yapıları kullanarak, algoritma şifreli verilerin

güvenliğini artıran karmaşık desenler oluşturur ve yetkisiz şifre çözmeye karşı dirençli hale

getirir. Döngüsel graflar, karmaşık ve tekrarsız desenler oluşturulmasına katkı sağlarken,

düzlemsel graflar, verilerin güvenli bir yapıya etkin bir şekilde organize edilmesine yardımcı

olur. Minimal spinning ağaç kavramı, şifreleme ve şifre çözme işlemlerinin hesaplama

verimliliğini artırmada önemli bir rol oynar. Bu yenilikçi yaklaşım, sadece güvenliği

güçlendirmekle kalmaz, aynı zamanda geleneksel şifreleme tekniklerine göre daha verimli bir

alternatif sunar. Düzlemsel graflar, şifreleme sürecini organize etme ve yapılandırma konusunda

önemli bir rol oynarken, minimal spinning ağaçlar, hem şifreleme hem de şifre çözme işlemleri

için hesaplama verimliliğini artırır. Bu yaklaşım, yalnızca önemli bir güvenlik seviyesi

sunmakla kalmaz, aynı zamanda Python'da güvenli veri şifreleme ve şifre çözme için verimli ve

ölçeklenebilir bir yöntem sunar.

Anahtar Kelimeler: Şifreleme-Şifre Çözme, Düzlemsel Graf, Döngüsel Graf.

Yılmaz Gür 1

Hülya Gür 2,3

How to Cite This Article

Gür, Y. & Gür, H. (2025). “The
Role of Planar Graphs in

Encryption and Decryption in

Secure Communications: An
Example”, International Social

Mentality and Researcher

Thinkers Journal, (Issn:2630-

631X) 11(3): 428-436. DOI:
https://doi.org/10.5281/zenodo.1

5544510

Arrival: 18 March 2025

Published: 30 May 2025

Social Mentality And Researcher
Thinkers is licensed under a

Creative Commons Attribution-

NonCommercial 4.0 International
License.

https://orcid.org/0000-0003-1709-1298
https://orcid.org/0000-0001-8479-8811

 Social, Mentality and Researcher Thinkers Journal 2025 MAY (Vol 11 - Issue:3)

smartofjournal.com / editorsmartjournal@gmail.com / Open Access Refereed / E-Journal / Refereed / Indexed

429

index of the array corresponds to a vertex in the graph, and the linked list in each index has the addresses or

references of the vertices next to that vertex. This structure is particularly useful for sparse graphs, where the

number of edges is much smaller than the number of connections. On the other hand, the adjacency matrix is a

two-dimensional array of size v, where v is the number of vertices in the graph. Each element of this matrix is

the presence or absence of an edge between a pair of vertices. If an edge exists between vertex i and vertex j,

the matrix entry a[i][j] will have a nonzero value (1); otherwise, it will have zero (0). The adjacency matrix is

preferred for dense graphs, where the number of edges is large related to the number of vertices.

Cryptography is the science and practice of protecting communications from third-party interception, ensuring

that only the intended recipient and sender can understand the content of a transmitted message Indhu,

&Rekha, 2022). It involves applying mathematical algorithms to transform the original message (or plaintext)

into a form that cannot be read by unauthorized people (Yamuna, et al. 2012). This transformation process,

often called encryption, uses a cryptographic key to make the text unintelligible without the corresponding

decryption key (Kumari&Kirubanad, 2018; Wardak, et al. 2024).

Cryptography can take forms, one of which involves replacing characters or symbols in the plaintext with

other characters, a process called substitution encryption. The modified message that no longer resembles its

original form is called ciphertext. This ciphertext can only be converted back to its original form (plaintext) by

a person or system that has the correct decryption key. Therefore, cryptographic techniques are central to

secure communication and data protection and form the basis of security protocols used in modern digital

systems, such as email encryption, secure web browsing (https), and data storage security (Geetha&Regavi,

2022; Mohamed, 2020).

This paper introduces an innovative algorithm for encryption and decryption in Python and uses the

mathematical properties of planar graphs to ease secure data transmission. The proposed symmetric encryption

method combines the basic concepts of cyclic graphs, planar graphs, and minimal spanning trees to generate a

robust and complex ciphertext using a shared key (see Appendix). Using these graph-based structures, the

algorithm creates complex patterns that significantly increase the security of encrypted data and make it

resistant to unauthorized decryption.

The algorithm uses a cyclic graph to create complex, non-repetitive patterns that are difficult to solve without

the key. The use of planar graphs offers an effective way to structure and organize encrypted data, making the

encryption process both secure and computationally efficient. Additionally, minimum spanning trees used to

improve the computational complexity of both encryption and decryption operations, reducing the time and

resources needed for secure communication (Kumari, M&Kirubanad, 2018).

This novel approach not only strengthens the security of the encryption process but also provides an efficient

and scalable method for implementing encryption and decryption in Python. By exploiting the properties of

graph theory, the proposed algorithm offers an important level of security and efficiency, making it a

promising alternative to traditional cryptographic techniques.

METHODOLOGY

The encryption algorithm are given in the Table 1step by step.

Table 1: The encryption algorithm

Step Description

1. Start Character Add an individual character (e.g. A) to show the starting character of the plaintext.

2. Vertex Creation Create a vertex for each character in the plaintext.

3. Edge Creation Add edges between consecutive vertices (characters) to form a cycle graph.

4. Edge Weight Assignment The weight of the edges is the distance between the vertices. Find the weights using the values

in the coding table.

5. Planar Graph Construction Add more edges to the graph to form a planar graph. Assign sequential weights starting from

the maximum weight in the encoding table.

6. Minimum Spanning Tree

(MST)

Compute the Minimum Spanning Tree (MST) using graph algorithms (e.g., Kruskal’s or

Prim’s).

7. Matrix Representation Store the vertices in a matrix, placing the vertex order along the diagonal.

8. Matrix Multiplication Multiply the matrices to produce an intermediate result.

9. Shared-Key Encryption Multiply the resulting matrix M3 by the predefined shared-key K to form matrix C (ciphertext).

10. Ciphertext Construction Create the ciphertext generated in linear format with matrix C and matrix M1 from step 8

The decryption algorithm are given in the Table 2.

 Social, Mentality and Researcher Thinkers Journal 2025 MAY (Vol 11 - Issue:3)

smartofjournal.com / editorsmartjournal@gmail.com / Open Access Refereed / E-Journal / Refereed / Indexed

430

Table 2: The encryption algorithm

Step Description

1. Inverse Shared-Key The receiver must compute M3 which is the inverse of the shared-key K−1.

2. Matrix Inversion The receiver must compute M2 which is the inverse of the matrix M1 (ciphertext) using K−1.

3. Original Text Recovery Decode the resulting matrix M1 using the encoding table to recover the original plaintext.

FINDINGS AND DISCUSSION

This chart succinctly summarizes both the encryption and decryption processes.

Example: Suppose we want to encrypt the plaintext ‘BASE’ to send it to the receiver. The first step in the

encryption process is to convert the message into a graph. This is done by converting each character of the

plain text into a corresponding vertex in the graph. For the message ‘BASE’, we create the following vertices:

vertex v1 for character B; vertex v2 for A character; vertex v3 for character S; vertex v4 for character E. Thus,

the graph starts with four vertices being each character of the plaintext.

Link each pair of sequential characters together to form a cycle graph, ensuring that the first and last characters

are also connected to complete the cycle. Then, assign a weight to each edge using the encoding Table 3

provided below.

Table 3: Encoding table

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A B C D E F G H I J K L M N O P Q R S T U V W

24 25 26

X Y Z

Then, the graph will be shown in Figure 1. This refers to the graph representation of the plaintext as a cycle

graph Figure 2.

Figure 1: Connected Graph

Figure 2: Wighted graph contained plain text characters

The edges are given:

e1 = |v1-v2| = |1-2| = 1, e2 = |v2-v3| = |1-19| = 18, e3 = |v3-v4|= |19-5| = 14, e4 = |v4-v5| = |5-2| = 3.

This weighted graph can now be used in encryption algorithms (Figure 2). Each character is mapped to a

vertex, and the connections between vertices (edges) have weights that can be used to define a more complex

encryption process, such as when generating cipher text or using graph algorithms like minimum spanning

trees.

 Social, Mentality and Researcher Thinkers Journal 2025 MAY (Vol 11 - Issue:3)

smartofjournal.com / editorsmartjournal@gmail.com / Open Access Refereed / E-Journal / Refereed / Indexed

431

A planar graph is defined as a graph that can be drawn on a plane without edges crossing. To form a planar

graph, we need to add edges between the vertices (standing for the characters) in such a way that no two edges

cross each other.

Figure 3: Planar graph

Once we have created the graph by adding all the vertices and edges, we can represent the graph as a matrix

(specifically an adjacency matrix) (Figure 3). An adjacency matrix is a square matrix where: Each row and

column corresponds to a vertex in the graph. If there is an edge between two vertices, the corresponding

matrix cell has the weight of the edge between them. If there is no edge, the corresponding cell has 0 or

infinity (depending on the approach).

When we continue adding edges to the planar graph, the coding table will be used for the weights of the edges.

However, while calculating the weight of the newly added edge, a consecutive weight is added starting from

the maximum weight in the coding table of each newly added edge. Special Character to Point to the First

Character: To mark the start of the graph, we add a special character that points to the first character. This

helps establish a reference point for encryption and decryption processes. Add a special character "#", "0" or

"B" before the first character (e.g., "B"), which will point to the first character in the message (e.g., "A" ;

would be # → X → A → S →)(see Figure 4).

Figure 4: Planar graph with special character

[𝑴𝟏]𝟓𝒙𝟓=

[

0 1 0 0 0
1 0 1 17 3
0 1 0 18 0
0 17 18 0 14
0 3 4 14 0]

We need to find the minumum spanning tree (Figure 5):

 Social, Mentality and Researcher Thinkers Journal 2025 MAY (Vol 11 - Issue:3)

smartofjournal.com / editorsmartjournal@gmail.com / Open Access Refereed / E-Journal / Refereed / Indexed

432

Figure 5: Planar Graph with special character

Minumum spanning tree matrix is given below:

 𝑥 𝐵 𝐴 𝐸 𝑆

M2=

𝑥
𝐵
𝐴
𝐸
𝑆

[

 0 1 0 0 0
 1 0 1 0 0
 0 1 0 4 0
 0 0 4 0 14
 0 0 0 14 0]

The number of characters is written in order in the elements on the diagonal of the adjacency matrix. Each

character in the plaintext message is assigned a position or index based on its sequential appearance in the

message. These indices, representing the relative order of the characters, are then placed in the diagonal

elements of the adjacency matrix (Table 4).

Table 4: Character Values

Order number X B A E S

Character 0 1 2 3 4

 𝑥 𝐵 𝐴 𝐸 𝑆

M2=

𝑥
𝐵
𝐴
𝐸
𝑆

 [

 0 1 0 0 0
1 0 1 0 0
 0 1 0 4 0
 0 0 4 0 14
 0 0 0 14 0

] and we change dioganal elements as seen new M2 below:

M2=

𝑥
𝐵
𝐸
𝑆
𝐴

 [

 0 1 0 0 0
1 1 1 0 0
 0 1 2 4 0
 0 0 4 3 14
 0 0 0 14 4

]

After that we multiply M1 and M2. Then M3= M1.M2.

M3= M1xM2= =

[

0 1 0 0 0
1 0 1 17 3
0 1 0 18 0
0 17 18 0 14
0 3 4 14 0]

 . [

 0 1 0 0 0
1 1 1 0 0
 0 1 2 4 0
 0 0 4 3 14
 0 0 0 14 4

] then

M3 =

[

1 0 1 0 0
0 2 68 46 238
1 0 73 0 252
17 18 17 268 0
3 4 59 16 196]

The upper diagonal matrix K is preferred to provide ease of calculation, efficiency, and reliability in

encryption systems.

 Social, Mentality and Researcher Thinkers Journal 2025 MAY (Vol 11 - Issue:3)

smartofjournal.com / editorsmartjournal@gmail.com / Open Access Refereed / E-Journal / Refereed / Indexed

433

K =

[

1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1]

C= M3 . K =

[

1 0 1 0 0
0 2 68 46 238
1 0 73 0 252
17 18 17 268 0
3 4 59 16 196]

 .

[

1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1]

this is first chiper matrix:

C1=

[

22 24 218 330 686
21 24 217 330 686
21 22 149 284 448
20 22 76 284 196
3 4 59 16 196]

The data to be send is:

22 24 218 330 686 21 24 217 330 686 21 22 149 284 448 20 22 76 284 196 3 4 59 16 196

Decryption Process:

The incoming code in the form of a 25-element row matrix in the example corresponds to a 5x5 matrix, and

the K matrix size to be inverted is also 5x5.

The decryption process begins when the receiver receives the ciphertext. A ciphertext, denoted as C, is a

transformed version of the original plaintext that has been encrypted using a shared encryption key K.

To retrieve the original plaintext, the receiver must reverse the encryption process using the appropriate

decryption steps.

The first step in this process is to compute the matrix M3, which is an intermediate matrix used for the

decryption. This is achieved by multiplying the received ciphertext by the inverse of the shared key matrix,

denoted as K−1.

M3=C. K−1

Where: M3 is the intermediate matrix that will contain the values used to reconstruct the original message. C is

the received ciphertext. K−1 is the inverse of the shared key matrix K.

Multiplying the ciphertext by the inverse of the shared key matrix effectively undoes the transformations

applied during encryption. The inverse of K ensures that the operations are reversed, restoring the original

order and structure of the data.

Once M3 is computed, the receiver can proceed with the next steps of the decryption process, which may

involve additional matrix operations or the application of a decoding table, depending on the encryption

method used.

K-1 =

[

1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1]

M3= C . K-1 =

[

22 24 218 330 686
21 24 217 330 686
21 22 149 284 448
20 22 76 284 196
3 4 59 16 196]

 .

[

1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1]

 Social, Mentality and Researcher Thinkers Journal 2025 MAY (Vol 11 - Issue:3)

smartofjournal.com / editorsmartjournal@gmail.com / Open Access Refereed / E-Journal / Refereed / Indexed

434

M3 =

[

 1 0 1 0 0
0 2 68 46 238
 1 0 73 0 252
 17 18 17 268 0
 3 4 59 16 196]

Then calculate M2 by multiplying M3 by M1
-1.

M1 = [

 0 1 0 0 0
1 0 1 0 0
 0 1 0 4 0
 0 0 4 0 14
 0 0 0 14 0

] and M2= [

 0 1 0 0 0
1 1 1 0 0
 0 1 2 4 0
 0 0 4 3 14
 0 0 0 14 4

] then

M1
-1=

[

3 1 −3/2 −3/4 5/7
1 0 0 0 0

−5/9 0 −7/36 0 1/4
−1/18 0 1/18 0 0
−1/2 0 1/4 1/14 −9/28]

 and

M2
-1=

[

−31/54 1 −23/54 −1/27 7/54

1 0 0 0 0
−23/54 0 23/54 1/27 −7/54
−1/27 0 1/27 −1/54 7/108
7/54 0 −7/54 7/108 5/216]

M2= M1
-1 . M3

M2=

[

3 1 −3/2 −3/4 5/7
1 0 0 0 0

−5/9 0 −7/36 0 1/4
−1/18 0 1/18 0 0
−1/2 0 1/4 1/14 −9/28]

 .

[

1 0 1 0 0
0 2 68 46 238
1 0 73 0 252
17 18 17 268 0
3 4 59 16 196]

M2=

[

 0 1 0 0 0
1 0 1 0 0
 0 1 0 4 0
 0 0 4 0 14
 0 0 0 14 0]

 represent the following final graph (it is given below).

The matrix showed that Spanning tree (e1-e1-e6-e3) is a final graph as it can be sen in the Figure 5.

IMPLEMENTATIONS AND RESULTS

To implement and evaluate the proposed algorithm.The experimental tests were carried out using a variety of

plain text inputs, which represented messages of different lengths. These tests were designed to assess the

accuracy and efficiency of the algorithm. In the study, a random set of encryption keys was generated to test

the performance of the algorithm, and the results were recorded for later analysis. Some of the key

experimental outcomes were captured in Table 2, where the effect of different plaintext lengths and key sizes

was explored. The findings obtained were considered from Experiments as key length flexibility; ciphertext

growth; encryption time and algorithm efficiency with small plain texts. The algorithm's design allows it to

work with public keys of arbitrary length. This is achieved by duplicating the key and extending it to te desired

length. This flexibility ensures that the method can be adapted for varying security requirements, regardless of

the key size. Case studies have shown that the size of the ciphertext is positively proportional to the length of

the plaintext. As the plaintext message grows larger, the algorithm produces a larger ciphertext, which is

expected in cryptographic systems. This suggests that the encryption algorithm is scalable; however, it is more

efficient when applied to smaller plaintext messages. One notable observation from the experimental results is

the increased time required for encryption as the size of the plaintext message grows. This is largely due to the

computational complexity involved in the matrix multiplication procedure used in the encryption process. The

algorithm's performance scales with the size of the input, and matrix multiplication, which forms the core of

the encryption technique, adds to the time complexity. Consequently, while the algorithm is highly effective

for smaller messages, it may require optimizations or alternative approaches for large-scale encryption tasks.

Despite the increase in ciphertext size and encryption time with larger plaintexts, the algorithm was found to

be particularly efficient for smaller plaintexts (Paszkiewicz et al., 2001). This is a common trade-off in

 Social, Mentality and Researcher Thinkers Journal 2025 MAY (Vol 11 - Issue:3)

smartofjournal.com / editorsmartjournal@gmail.com / Open Access Refereed / E-Journal / Refereed / Indexed

435

encryption schemes, where smaller messages can be processed faster, allowing for quick encryption and

decryption.

CONCLUSION FROM EXPERIMENTAL RESULTS

A strong aspect of the obtained results is that the proposed encryption algorithm effectively handles various

plaintext sizes, is scalable, and flexible (Etaiwi, 2014; Sensarma&Sarma, 2014; Anandhi&Abarna, 2022;

Indhu&Rekha, 2022). However, the time required for encryption increases with the size of the input,

particularly due to the matrix multiplication involved. While this may not pose a problem for smaller

messages, additional work may be necessary to improve the algorithm's performance for larger-scale

applications. Further optimizations could be explored to reduce the computational overhead, particularly

focusing on the matrix operations and potentially parallelizing the encryption process for more extensive

datasets.In conclusion, while the algorithm shows promising results for small to medium-sized data, further

optimizations are needed for broader use cases involving larger data volumes.

This paper explores a cryptographic algorithm that leverages planar graphs for secure data encryption and

decryption. The approach uses the structural properties of planar graphs, such as their ability to have complex

relationships between vertices and edges, to enhance the security of the encryption process. By employing the

concepts of cycle graphs, minimal spanning trees, and weighted edges, the proposed algorithm offers a robust

framework for encrypting messages in a manner that is resistant to unauthorized decryption (Indhu&Rekha,

2022).

The algorithm implemented in Phyton programming language, which provided a reliable and efficient

platform for the algorithm's execution (Schneier,1996; Katz&Lindell, 2007). Phyton is chosen for its

computational efficiency and flexibility in handling complex data structures, such as graphs and matrices,

which are integral to the encryption process. All matrix operations (multiplication of matrices, inversion of

matrices) were done using Python software codes (see Appendix). This algorithm evaluated and confirmed

using different datasets, showing its functionality and potential for use in real-world applications.

In future work, the proposed algorithm could further develop and be implemented using other programming

languages. Moreover, future improvements could focus on optimizing the algorithm for larger datasets,

enhancing its scalability, and improving computational efficiency, especially in the context of large-scale

encryption. With the continued advancements in programming languages and cryptographic research, there is

significant potential for this algorithm to be refined and adapted for even more complex cryptographic tasks in

the future.

REFERENCES

Anandhi, M., & Abarna, D. (2022). Encryption algorithm using graph theory. International Journal of

Mechanical Engineering, 7(4), 853-859.

Schneier, B. (1996). Applied cryptography: Protocols, algorithms, and source code in C (2nd edition). Wiley.

Sensarma, D. & Sarma, S. S. (2014). GMDES: a graph based modified data encryption standard algorithm

with enhanced security. International Journal of Research Engineering Technology, 3(3), 653-660.

Etaiwi, W. M. Al. (2014). Encryption algorithm using graph theory. Journal of Scientific Research and

Reports, 3(19), 2519-2527.

Geetha, N. K. & Regavi, V. (2022). Graph theory matrix approach in cryptography and network security. 2022

Algorithms, Computing and Mathematics Conference (ACM), Chennai, India, 108-110.

Katz, J., & Lindell, Y. (2007). Introduction to modern cryptography (3rd edition). CRC Press.

Kumari, M., & Kirubanad, V. B. (2018). Data encryption and decryption using graph plotting. International

Journal of Civil Engineering and Technology, 9, 36-46.

Mohamed, K. S. (2020). Introduction to Cyber Security. In New Frontiers in Cryptography 1-12. Springer,

Cham.

Wardak, O., Sinha, D., & Sethi, A. (2024). Encryption and decryption of signed graph matrices through RSA

algorithm. Indian Journal of Pure and Applied Mathematics, 55, 1477-1484.

Paszkiewicz, A., Górski, A. K., Gorski, K., Kotulski, Z. A., Kulesza, K., & Szczepanski, J. (2001). Proposals

of graph-based ciphers, theory and implementations. ResearchGate, 1-10.

 Social, Mentality and Researcher Thinkers Journal 2025 MAY (Vol 11 - Issue:3)

smartofjournal.com / editorsmartjournal@gmail.com / Open Access Refereed / E-Journal / Refereed / Indexed

436

Yamuna, M., Gogia, M., Sikka, A., & Khan, J. H. (2012). Encryption using graph theory and linear algebra.

International Journal of Computer Applications, 5(2), 102-107.

Indhu, K., & Rekha, S. (2022). An approach of graph theory on cryptography. Journal for Research in Applied

Science and Engineering Technology, 10(11), 1587-1591.

