

SOCIAL MENTALITY AND RESEARCHER THINKERS JOURNAL

Open Access Refereed E-Journal & Refereed & Indexed

ISSN: 2630-631X www.smartofjournal.com / editorsmartjournal@gmail.com

Social Sciences Indexed Article Arrival Date: 12.09.2018

Published Date:14.11.2018 Vol 4 / Issue 13 / pp:774-782

ENVIRONMENTAL KUZNETS CURVE (EKC): EVIDENCE FROM GHANA

CEVRESEL KUZNETS EĞRISI: GANA ÖRNEĞI

Emrah BESE

PhD Candidate, Southern University Institute of Management Business and Law, Rostov-on-Don, Russia, emrahbeshe@gmail.com

ABSTRACT

In this study, EKC hypothesis is examined for Ghana for the period between 1971 and 2014. EKC hypothesis is examined under two nexus which are GDP, CO₂ and energy consumption, and GDP, CO₂, energy consumption and the square of GDP. Causal and long-term relationships between GDP, CO2 and energy consumption are examined for Ghana by Johansen cointegration and VAR Granger Causality/Block Exogeneity Wald Test. Long-term relationships between GDP, CO₂, energy consumption and the square of GDP are examined by Johansen cointegration test. EKC hypothesis is not confirmed for Ghana, no causal relationships are found between GDP and energy consumption, and unidirectional causality running from energy consumption to CO₂ is found. Neutrality hypothesis is confirmed for Ghana.

Keywords: environmental Kuznets curve; Johansen cointegration test; VAR Granger Causality/Block Exogeneity Wald test; Ghana

ÖZET

Bu çalışmada, çevresel Kuznets eğrisi Gana için 1971 ve 2014 yılları arasında incelenmiştir. Çevresel Kuznets eğrisi iki ilişki altında incelenmiştir. Birincisi ekonomik büyüme, CO2 ve enerji tüketimi ilişkisi, ikincisi ise ekonomik büyüme, CO2, enerji tüketimi ve ekonomi büyümenin karesi arasındaki ilişkidir. Ekonomik büyüme, CO₂ ve enerji tüketimi arasındaki nedensel ve uzun vadeli ilişkiler Johansen eşbütünleşme testi ve VAR Granger Causality/Block Exogeneity Wald Test ile incelenmiştir. Ekonomik büyüme, CO2, enerji tüketimi ve ekonomik büyümenin karesi arasındaki uzun vadeli ilişki Johansen eşbütünleşme testi ile incelenmiştir. Çevresel Kuznets eğrisi Gana için doğrulanmamış olup, ekonomik büyüme ve enerji tüketimi arasında nedensel bir ilişki bulunmamıştır. Enerji tüketiminden CO2'ye doğru tek yönlü nedensellik bulunmuşur. Neutrality hipotezi Gana için doğrulanmıştır.

Anahtar Kelimeler: cevresel Kuznets eğrisi; Johansen eşbütünleşme testi; VAR Granger Causality/Block Exogeneity Wald test; Gana

1. INTRODUCTION

Kuznets (1955) studied the relationship between economic growth and income inequality and found an inverse U relationship. In 1990s, Kuznets curve was examined as EKC which stated an inverse U relationship between emissions and income.

Many studies have examined the dynamic relationships between energy and income, income and emissions, and energy, income and emissions by taking EKC as a base in the academic literature. To examine these dynamic relationships, the researchers implemented many kinds of econometrical methods such as Multivariate Regressions, the Johansen cointegration test, the ADF unit root test, the VAR (Vector Autoregressive) model, variance decomposition analysis (VDA), panel data analysis, Granger causality test and impulse response analysis (IRA) in the methodology section of their articles. Researchers obtained different results for the validity of EKC relationships depending on different samples, methodologies and time periods.

The main purpose of this study is to reveal the stable long-term relationships and causal relationships between emissions, income and energy consumption (EN), test the EKC hypothesis for Ghana and expand literature for individual country studies of Ghana. There are limited individual country studies in the literature for Ghana, so the main new contribution of this study is to use time series data to test EKC for Ghana on the individual country level and to assess causal relationships between emissions, income and EN for Ghana.

For individual country studies for Ghana, Twerefou et al. (2016) examined the EKC relationship between CO₂, EN, foreign direct investment, GDP and trade openness in Ghana. Twerefou, Adusah-Poku and Bekoe (2016) did not confirm the EKC relationship for Ghana and found that trade openness and EN affected CO₂ emissions positively in the long run. Appiah et al. (2017) examined the EKC relationship between CO₂ and GDP in Ghana for the period 1970-2016. Appiah et al. (2017) did not confirm the EKC relationship in Ghana. Muhammad et al. (2016) examined the EKC relationship between CO₂, GDP, energy intensity and globalization in Ghana for the period 1971-2012. Muhammad et al. (2016) did not confirm the EKC relationship in Ghana and found that energy intensity and globalization had a positive impact on CO_2 emissions in the long run. Opoku et al. (2014) examined the EKC relationship between CO₂, GDP and trade openness in Ghana for the period 1970-2010. Opoku et al. (2014) confirmed the EKC relationship in Ghana and found that trade openness had a positive impact on CO_2 emissions. Adom et al. (2012) examined the relationships between CO₂, GDP, industrial structure and technical efficiency for Morocco, Senegal and Ghana. Adom et al. (2012) found that CO2, GDP, industrial structure and technical efficiency were cointegrated, and there was bidirectional causality between economic growth and carbon emissions, and energy efficiency policies would have a significant impact on CO₂ emissions in Ghana. Asumadu-Sarkodie and Owusu (2016) examined the relationships between CO₂, EN, GDP and population in Ghana for the period 1980-2012. Asumadu-Sarkodie and Owusu (2016) found that there were bidirectional causality between CO₂ emissions and EN, and GDP and EN, and unidirectional causality running from GDP to CO₂ emissions. Aboagye (2017) examined the EKC relationship between CO₂, EN and GDP in Ghana for the period 1975-2015. There were bidirectional causality between GDP and EN, and GDP and CO₂ emissions. Asumadu-Sarkodie and Owusu (2017) examined the relationships between CO₂, GDP, energy use and population in Ghana for the period 1971-2013. Asumadu-Sarkodie and Owusu (2017) found that CO₂, GDP, population and energy use were cointegrated and there were unidirectional causality from population to energy use and CO_2 , and unidirectional causality from energy use to CO_2 .

For studies that verify the EKC hypothesis, Balibey (2015), Katircioglu (2017) and Ozturk and Oz (2016) examined the EKC hypothesis in Turkey. Balibey (2015) verified quadratic relationship between CO_2 and GDP. Katircioglu (2017) did not verify the oil-induced EKC relationship in Turkey but emission-income the EKC relationship in Turkey. Ozturk and Oz (2016) verified the EKC relationship in Turkey both in the short-run and the long-run.

For studies that do not verify the EKC hypothesis, Zoundi (2017), Wang (2012) and Saleh et al. (2014) tested and found no evidence for the EKC relationship for 25 countries, 98 countries and Iran respectively. Ghosh et al. (2014) and Amin et al. (2012) tested the EKC relationship and found no evidence for the EKC relationship in Bangladesh. Friedl and Getzner (2002) tested the EKC relationship in Austria and found no evidence for it.

In this study, the EKC hypothesis is examined between GDP, CO_2 and EN, and GDP, EN, CO_2 , and the square of GDP. Causal relationships are examined between GDP, CO_2 and EN.

After introduction section, methodology is discussed in Section 2. Data is presented in Section 3. Empirical results and conclusion are presented in Section 4 and Section 5 respectively in this study.

2. METHODOLOGY

Augmented Dickey and Fuller (1981) Unit Root Test is applied to find stationary levels of each variable. Johansen (1991) Cointegration Test is applied to examine the cointegration relationship between variables since variables are at stationary levels with I(1).

VAR Model is applied for variables which are integrated at I(1) with no cointegration. AR Root Graph, VAR Residual Heteroskedasticity (VAR RS) test and VAR Residual Serial Correlation LM (VAR LM) test are applied to determine the stability of VAR model.

Social, Mentality and Researcher Thinkers Journal

IRA and VDA are applied to find how each variable impact and influence the other variables.

VAR Granger Causality/Block Exogeneity Wald (VAR GC) Test is used to find the causal relationships between variables which are integrated at I(1) with no cointegration.

Two models in this study are used to examine the EKC relationship for Ghana. Causal relationships are examined between CO_2 , GDP and EN. EKC relationships are examined between CO_2 , GDP and EN, and CO_2 , GDP, the square of GDP and EN.

$$\ln(\mathrm{CO}_2)_t = \beta_0 + \beta_1 \ln(GDP)_t + \beta_2 \ln(EN)_t + e_t \tag{1}$$

 β_{0} , β_{1} , β_{2} , are estimated parameters. t is time index. e is error term. CO₂ is carbon dioxide emissions per capita. GDP is gross domestic product per capita. EN is energy consumption per capita.

$\ln(CO_2)_t = \beta_0 + \beta_1 \ln(GDP)_t + \beta_2 \ln(GDP)_t^2 + \beta_3 \ln(EN)_t + e_t$ (2)

 β_{0} , β_{1} , β_{2} and β_{3} , are estimated parameters. t is time index. e is error term. CO₂ is carbon dioxide emissions per capita. GDP is gross domestic product per capita. EN is energy consumption per capita.

Table 1. ADF Unit Root Tests for Ghana.				
Variable	At Level	At first difference		
variable	Intercept	Intercept		
LNCO ₂ Ghana	-0.000784(1)	-9.514818(0)*		
LNEN Ghana	-1.614681(0)	-5.961521(0)*		
LNGDP Ghana	0.479792(1)	-4.222747(0)*		
LNGDP2 Ghana	0.572594(1)	-4.202418(0)*		

Notes: * and ** show the statistical significance at 1% and 5% levels, respectively. The lag length is shown by the values in parentheses.

Source: Authors' Calculations.

3. DATA

The data is obtained from World Bank's official web site for CO_2 emissions (metric tons per capita), EN (kg of oil equivalent per capita) and GDP per capita (constant 2010 US\$). Period for data is over 30 to carry out parametrical tests. Period for data in this study is determined according to the availability of data sets in data sources. Period for data in this study is from 1971 to 2014 for Ghana.

4. RESULTS

4.1 CO₂, GDP and EN Nexus

For Ghana, LNCO₂, LNEN and LNGDP are at I(1), I(1) and I(1) levels (see Table 1). Since variables are stationary at I(1), Johansen cointegration test is applied. According to Johansen cointegration test results, no cointegration is found between CO₂, GDP and EN (see Table 2). There is no long-run relationship between CO₂, GDP and EN. VAR model is established, and VAR GC Tests are applied for causality between CO₂, GDP and EN. VAR LM test and VAR RS test results show the model is stable (see Table 3 and Table 4). VAR satisfies the stability condition (see Figure 1). According to VAR GC Tests results, there is unidirectional causality running from LNEN to LNCO2. There is no causality from LNGDP to LNCO2, from LNCO2 and LNGDP to LNEN, and from LNCO2 and LNEN to LNGDP (see Table 5).

Social, Mentality and Researcher Thinkers Journal

Unrestricted Cointegration Rank Test (Trace)					
Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**	
None	0.312921	22.71867	29.79707	0.2601	
At most 1	0.138551	6.955828	15.49471	0.5828	
At most 2	0.016341	0.691990	3.841466	0.4055	
Unrestricted Cointegration Rank Test (Maximum Eigenvalue)					
Unrestricted	Cointegration Rank Te	st (Maximum Eig	envalue)		
Unrestricted Hypothesized No. of CE(s)	Cointegration Rank Te Eigenvalue	st (Maximum Eig Trace Statistic	envalue) 0.05 Critical Value	Prob.**	
Unrestricted Hypothesized No. of CE(s) None	Cointegration Rank Te Eigenvalue 0.312921	st (Maximum Eig Trace Statistic 15.76284	envalue) 0.05 Critical Value 21.13162	Prob.** 0.2390	
Unrestricted Hypothesized No. of CE(s) None At most 1	Cointegration Rank Te Eigenvalue 0.312921 0.138551	st (Maximum Eig Trace Statistic 15.76284 6.263837	envalue) 0.05 Critical Value 21.13162 14.26460	Prob.** 0.2390 0.5796	

Table 2. Results for Johansen Cointegration Test of CO₂-GDP-EN for Ghana.

Table 3. VAR LM Test Results of CO_2 -GDP-EN for Ghana.

Lage	s LM-Stat	Pro	b
1	3.513286	0.940)4

Source: Authors' Calculations.

Table 4. VAR RS Test Results of CO₂-GDP-EN for Ghana.

Joint test			
Chi-sq	Df	Prob.	
42.41823	36	0.2138	
Source: Authors' Calculations			

Figure 2. IRA of CO₂-GDP-EN for Ghana **Source:** Authors' Calculations.

IRA is applied to find how each variable impact and influence the other variables. Firstly, EN has a positive impact on CO_2 in the short-term and then have a negative impact on CO_2 in the short-term. GDP affects CO_2 positively in the short-term (see Figure 2).

smartofjournal.com / editorsmartjournal@gmail.com / Open Access Refereed / E-Journal / Refereed / Indexed

Journal SMART

Dependent Variable: DLNCO ₂				
Excluded	Chi-sq	df	Prob.	
DLNEN	6.844335	1	0.0089	
DLNGDP	1.281343	1	0.2576	
All	9.830359	2	0.0073	
	Dependent Variable	: DLNEN		
Excluded	Chi-sq	df	Prob.	
DLNCO ₂	1.139619	1	0.2857	
DLNGDP	2.784538	1	0.0952	
All	3.740984	2	0.1540	
Dependent Variable: DLNGDP				
Excluded	Chi-sq	df	Prob.	
DLNCO ₂	0.088819	1	0.7657	
DLNEN	0.528939	1	0.4671	
All	0.577426	2	0.7492	
Source: Authors' Calculations.				

 Table 5. VAR GC Tests Results of CO₂-GDP-EN for Ghana.

Firstly, CO_2 affects EN negatively in the short-term, and then CO_2 affects EN positively in the short-term. GDP have a positive impact on EN in the short-term.

 CO_2 have a positive impact on GDP in the short-term. First, EN has a positive impact on GDP in the short-term and then EN have a negative impact on GDP in the short-term.

VDA is applied to find how each variable impact and influence the other variables. EN can cause 15.59% fluctuation in CO_2 in the short-term and 15.59% fluctuation in CO_2 in the long-term. GDP can cause 2.47% fluctuation in CO_2 in the short-term and 2.48% fluctuation in CO_2 in the long-term (see Table 7).

 CO_2 can cause 2.02% fluctuation in EN in the short-term and 2.02% fluctuation in EN in the long-term. GDP can cause 6.03% fluctuation in EN in the short-term and 6.05% fluctuation in EN in the long-term.

 CO_2 can cause 0.84% fluctuation in GDP in the short-term and 0.84% fluctuation in GDP in the long-term. EN can cause 2.43% fluctuation in GDP in the short-term and 2.43% fluctuation in GDP in the long-term.

4.2 CO₂, GDP, Square of GDP and EN Nexus

For Ghana, $LNCO_2$, LNEN, LNGDP and LNGDP2 are at I(1), I(1), I(1) and I(1) levels (see Table 1). Since variables are stationary at I(1), Johansen cointegration test is applied. According to Johansen cointegration test results, no cointegration is found between Square of GDP, CO_2 , EN and GDP (see Table 6). Since no long run relationship is found between Square of GDP, CO_2 , EN and GDP, EKC hypothesis is not confirmed for Ghana.

Journal

SMARI

Unrestricted Cointegration Rank Test (Trace)				
Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.
None	0.316392	34.36739	47.85613	0.4818
At most 1	0.226665	18.39182	29.79707	0.5372
At most 2	0.165318	7.596010	15.49471	0.5096
At most 3	0.000153	0.006415	3.841466	0.9356
U	nrestricted Cointegration	Rank Test (Maximum Ei	genvalue)	
Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.
None	0.316392	15.97557	27.58434	0.6679
At most 1	0.226665	10.79581	21.13162	0.6677
At most 2	0.165318	7.589595	14.26460	0.4220
At most 3	0.000153	0.006415	3.841466	0.9356

Table 6. Results for Johansen Cointegration Test of CO2-GDP-EN-SQUARE of GDP for Ghana.

Source: Authors' Calculations.

Table 7. VDA of CO₂-GDP-EN for Ghana.

Period	S.E.	DLNCO ₂	DLNEN	DLNGDP
1	0.107520	100.0000	100.0000 0.000000	
2	0.127787	84.17357	13.92428	1.902151
3	0.130676	82.06699	15.47453	2.458477
4	0.130835	81.93505	15.59018	2.474767
5	0.130854	81.91798	15.59638	2.485642
6	0.130855	81.91699	15.59658	2.486428
7	0.130855	81.91681	15.59657	2.486620
8	0.130855	81.91679	15.59656	2.486642
9	0.130855	81.91679	15.59656	2.486646
10	0.130855	81.91679	15.59656	2.486646
Period	S.E.	DLNCO ₂	DLNEN	DLNGDP
1	0.057079	4.89E-06	100.0000	0.000000
2	0.059282	1.498312	93.08874	5.412952
3	0.059787	2.006685	92.01301	5.980306
4	0.059824	2.020973	91.94185	6.037180
5	0.059831	2.024188	91.92472	6.051088
6	0.059832	2.024161	91.92324	6.052597
7	0.059832	2.024176	91.92294	6.052880
8	0.059832	2.024175	91.92291	6.052917
9	0.059832	2.024175	2.024175 91.92290	
10	0.059832	2.024175 91.92290		6.052924
Period	S.E.	DLNCO ₂	DLNEN	DLNGDP
1	0.043877	0.462922	2.739739	96.79734
2	0.047709	0.795973	2.489746	96.71428
3	0.048220	0.838167	2.443780	96.71805
4	0.048295	0.841702	2.436629	96.72167
5	0.048307	0.842606	2.435697	96.72170

Social, Mentality and Researcher Thinkers Journal					
6	0.048308	0.842698	2.435541	96.72176	
7	0.048309	0.842716	2.435520	96.72176	
8	0.048309	0.842718	2.435516	96.72177	
9	0.048309	0.842719	2.435516	96.72177	
10	0.048309	0.842719	2.435516	96.72177	

Source: Authors' Calculations.

5. CONCLUSION

The EKC hypothesis states that economic growth will lead to reduction in emissions. Results of this study did not verify this statement. Our results are in line with Twerefou, Adusah-Poku and Bekoe (2016), Appiah et al. (2017) and Muhammad et al. (2016) for not verifying the EKC relationship for Ghana. Our results are different from Opoku et al. (2014) which confirmed the EKC relationship for Ghana.

Asumadu-Sarkodie and Owusu (2016) found that there were bidirectional causality between CO_2 emissions and EN, and GDP and EN, and unidirectional causality running from GDP to CO_2 emissions. According to our results, there are no causal relationships between CO_2 and GDP, and GDP and EN, and there is unidirectional causality running from EN to CO_2 for Ghana.

Aboagye (2017) found that there were bidirectional causality between GDP and EN, and GDP and CO_2 emissions. According to our results, there are no causal relationship between GDP and EN, and GDP and CO_2 for Ghana.

Main findings in this study are that there is no long run relationship between CO_2 , GDP and EN, and between CO_2 , GDP, EN and the square of GDP. The EKC hypothesis is not confirmed for Ghana for the period between 1971 and 2014, so there is no inverted U relationship between income and emissions. Neutrality hypothesis is confirmed for Ghana which states there is no causal relationship between GDP and EN. No causality is found between CO_2 and GDP, and CO_2 and EN variables. Unidirectional causality running from EN to CO_2 is found.

No causal relationship between GDP and CO_2 means that a country's economic growth will not have an effect on emissions. Ghana is likely to achieve further economic growth without causing environmental degradation since no causality is found between CO_2 and GDP.

No causal relationship between GDP and EN means that a country's economic growth will not have an effect on EN. The economic growth of Ghana is not dependent on oil consumption. Also, oil consumption is not a source for economic growth in Ghana.

For Ghana, EN causes emissions. Ghana should increase energy efficiency in industrial sector and replace oil usage with natural gas for electricity generation. Expansion of mass transportation will help to decrease the increasing emissions of transport sector which is caused by the increasing number of passenger vehicles. Ghana should collaborate with international community to invest in renewable energy. Share of renewable energy in electricity generation, industrial sector and transport sector should be increased. Waste and forest management should be improved, and reforestation policy should be continued.

Economic growth is not likely to help Ghana to fight climate change by itself. Improving energy efficiency and increases in the use of renewable energy in the transport, industry and energy sectors will help Ghana to fight climate change and meet emission targets. Authorities in Ghana should continue to invest in energy conservation and emission reduction policies since these policies are likely to not have a detrimental effect on economic growth. Ghana is likely to achieve further economic growth without causing environmental degradation since no causality is found between CO2 and GDP.

The Limitations of our study are that results are obtained for Ghana and the period between 1971 and 2014 is examined for Ghana.

REFERENCES

Aboagye, Solomon. *Economic Expansion and Environmental Sustainability Nexus in Ghana*. Vol. 29, no. 2, 2017, pp. 155–68.

Adom, Philip Kofi, et al. "Carbon Dioxide Emissions, Economic Growth, Industrial Structure, and Technical Efficiency: Empirical Evidence from Ghana, Senegal, and Morocco on the Causal Dynamics." *Energy*, vol. 47, 2012, pp. 314–25, doi:10.1016/j.energy.2012.09.025.

Amin, Sakib Bin, et al. "Causal Relationship among Energy Use, CO 2 Emissions and Economic Growth in Bangladesh : An Empirical Study." *World Journal of Social Sciences*, vol. 2, no. 4, 2012, pp. 273–90.

Appiah, Kingsley, et al. "Investigation of the Relationship between Economic Growth and Carbon Dioxide (CO2) Emissions as Economic Structure Changes: Evidence from Ghana." *Resources and Environment*, vol. 7, no. 6, 2017, pp. 160–67, doi:10.5923/j.re.20170706.02.

Asumadu-Sarkodie, Samuel, and Phebe Asantewaa Owusu. "Multivariate Co-Integration Analysis of the Kaya Factors in Ghana." *Environmental Science and Pollution Research*, vol. 23, Environmental Science and Pollution Research, 2016, pp. 9934–43, doi:10.1007/s11356-016-6245-9.

---. "Recent Evidence of the Relationship between Carbon Dioxide Emissions, Energy Use, GDP, and Population in Ghana: A Linear Regression Approach Regression Approach." *Energy Sources*, vol. 12, no. 6, Taylor & Francis, 2017, pp. 495–503, doi:10.1080/15567249.2016.1208304.

Balibey, M. "Relationships Among Co2 Emissions, Economic Growth and Foreign Direct Investment and the Ekc Hypothesis in Turkey." *International Journal of Energy Economics and Policy*, vol. 5, no. 4, 2015, pp. 1042–49.

Dickey, David A., and Wayne A. Fuller. *Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root Author (s): David A . Dickey and Wayne A . Fuller Published by : The Econometric Society Stable URL : Http://Www.Jstor.Org/Stable/1912517 REFERENCES Linked References Are Availa.* Vol. 49, no. 4, 1981, pp. 1057–72.

Friedl, Birgit, and Michael Getzner. *Environment and Growth in a Small Open Economy : An EKC Case-Study for Austrian CO2 Emissions.* 2002.

Ghosh, Bikash Chandra, et al. "Economic Growth, CO2 Emissions and Energy Consumption: The Case of Bangladesh." *International Journal of Business and Economics Research*, vol. 3, no. 6, 2014, p. 220, doi:10.11648/j.ijber.20140306.13.

Johansen, S. Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models Author (s): Søren Johansen Published by : Econometric Society Stable URL : Http://Www.Jstor.Org/Stable/2938278 REFERENCES Linked References Are Available. Vol. 59, no. 6, 1991, pp. 1551–80.

KATIRCIOGLU, Setareh. "Investigating the Role of Oil Prices in the Conventional EKC Model: Evidence from Turkey." *Asian Economic and Financial Review*, vol. 7, no. 5, 2017, pp. 498–508, doi:10.18488/journal.aefr/2017.7.5/102.5.498.508.

Kuznets, S. "Economic Growth and Income Inequality." *The American Economic Review*, vol. 45, no. 1, 1955, pp. 292–302, doi:10.1596/978-0-8213-7318-7.

Muhammad, Shahbaz, et al. *Environmental Kuznets Curve Hypothesis and the Role of Globalization in Selected African Countries*. 2016.

Opoku, Eric Evans Osei, et al. "Trade Openness, Economic Growth and The Environment The Case

of Ghana." International Journal of Economics, Commerce and Management, vol. II, no. 8, 2014, pp. 1–13.

OZTURK, ZAFER, and DAMLA OZ. The Relationship between Energy Consumption, Income, Foreign Direct Investment, and CO2 Emissions: The Case of Turkey. no. June, 2016, pp. 0–20.

Saleh, I., et al. A Panel Data Approach for Investigation of Gross Domestic Product (GDP) and CO 2 Causality Relationship. Vol. 16, 2014, pp. 947–56.

Twerefou, Daniel Kwabena, et al. "An Empirical Examination of the Environmental Kuznets Curve Hypothesis for Carbon Dioxide Emissions in Ghana: An ARDL Approach." *Environmental & Socio-Economic Studies*, vol. 4, no. 4, 2016, pp. 1–12, doi:10.1515/environ-2016-0019.

Wang, Kuan-Min. "Modelling the Nonlinear Relationship between CO2 Emissions from Oil and Economic Growth." *Economic Modelling*, vol. 29, no. 5, North-Holland, Sept. 2012, pp. 1537–47, doi:10.1016/J.ECONMOD.2012.05.001.

Zoundi, Zakaria. "CO2 Emissions, Renewable Energy and the Environmental Kuznets Curve, a Panel Cointegration Approach." *Renewable and Sustainable Energy Reviews*, vol. 72, no. July 2016, Elsevier Ltd, 2017, pp. 1067–75, doi:10.1016/j.rser.2016.10.018.